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Scaling hypothesis leading to generalized extended self-similarity in turbulence
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A scaling hypothesis leading to generalized extended self-similarity~GESS! for velocity structure functions,
valid for intermediate scales in isotropic, homogeneous turbulence, is proposed. By introducing an effective

scale r̂ , monotonically depending on the physical scaler, with the use of the large deviation theory, the
asymptotic forms of the probability densities for the velocity differencesur and for the coarse-grained energy-
dissipation rate fluctuationse r , compatible with this GESS, are proposed. The probability density fore r is

shown to have the formPr(e);e21( r̂ /L)Sr̂ „zr̂ (e)… with zr̂(e)5 ln(e/eL)/ln(L/r̂), whereL andeL are the stirring
scale and the coarse-grained energy-dissipation rate over the scaleL. The concave functionSr̂(z), the spec-
trum, plays the central role of the present approach. Comparing the results with numerical and experimental
data, we explicitly obtain the fluctuation spectraSr̂(z).

DOI: 10.1103/PhysRevE.65.046307 PACS number~s!: 47.27.Gs, 47.27.Eq, 47.27.Jv
nc
e

at
al

a
-
y a
o

e

er

ion
con-

gy-
the
ing

ate

go
es
I. INTRODUCTION

One of the main topics of studies on developed turbule
is about velocity structure functions in isotropic, homog
neous turbulence that are believed to show universal st
tics in small scales in between the Kolmogorov microsc
~viscous scale! h and the stirring~energy injection! scaleL
@1#. The velocity structure function is defined as

Sq
u~r ![^ur

q~x!&, ~1.1!

where

ur~x![uvl~r1x!2vl~x!u, r[ur u, ~1.2!

is the difference of the longitudinal velocity components
two points separated by the distancer, and the angular brack
ets denote the ensemble average. Statistical homogeneit
isotropy of turbulence imply that its statistics depends
neither the positionx nor the direction vectorr /r , provided
that the positionsx andx1r are far from the boundary of th
fluid container. It is believed that the structure functionSq

u(r )
obeys the power law@1,2#

Sq
u~r !;r z(q), ~1.3!

in the so-called inertial subrangeh,r ,L, provided it is
sufficiently wide. The width of the inertial subrange is det
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mined by the Reynolds number Re5uLL/n with the charac-
teristic velocityuL of the fluid at the outer scaleL and the
kinematic viscosityn,

L

h
;Re3/4. ~1.4!

The similarity hypothesis of Kolmogorov@3#, using dimen-
sional arguments, gives

zK41~q!5
q

3
. ~1.5!

The derivation of this formula is based on the assumpt
that the energy-dissipation rate is a scale independent
stant in the inertial subrange~ISR!. Its validity was ques-
tioned because of the strong fluctuations of the ener
dissipation rate in space and time. This is called
intermittency problem and is one of the most interest
problems in turbulence@1#.

Introducing the coarse-grained energy-dissipation r
e r(x) by

e r~x![
1

~4pr 3/3!
E

uyu,r
e local~y1x!dy, ~1.6!

with the local energy-dissipation rate per mass

e local~x!5
n

2 (
i , j

S ]v i~x!

]xj
1

]v j~x!

]xi
D 2

, ~1.7!

in 1962, Kolmogorov@4# and Obukhov@5# assumed that
e r(x) is statistically related tour(x) via

ya
s:
©2002 The American Physical Society07-1
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ur

uL
;S e r

eL
D 1/3S r

L D 1/3

~1.8!

up to a statistically irrelevant numerical factor. HereeL

[uL
3/L is the energy-dissipation rate averaged over the la

est available scale, the outer scaleL, assumed to show no
fluctuations. If we define the coarse-grained ener
dissipation rate structure functionSq

e(r ) and assume the
asymptotic law@2#

Sq
e~r ![^e r

q~x!&;r t(q), ~1.9!

in the inertial subrange, the combination of Eqs.~1.3!, ~1.8!,
and ~1.9! yields

z~q!5
q

3
1tS q

3D . ~1.10!

The dissipation rate scaling exponent functiont(q) thus de-
scribes the deviation from the Kolmogorov scalingzK41(q)
5q/3, see Eq.~1.5!, and it is determined by the fluctuatio
statistics ofe r(x). We have

t~0!50, t~1!50, and t~2![2m. ~1.11!

The first equation is trivial, the second reflects the struct
equation, which givesz(3)51 ~and is related to the statist
cal homogeneity of the turbulent field!. The third equation is
the definition of the intermittency exponentm ~with m.0),
which is one of the parameters characterizing the fluctuat
of e r(x).

One of the fundamental problems of the statistical the
of turbulence is to determine the velocity scaling expon
functionsz(q) andt(q). Although many studies have bee
carried out aboutz(q) both experimentally and theoretically
we still have no conclusive experimental results and no s
theoretical basis aboutz(q) @2#. The experimental difficulties
are the limited statistics and/or the limited Reynolds nu
bers. The theoretical problem is the nonlinearity of t
Navier-Stokes equation.

In 1993 Benziet al. @6# noticed a surprising and interes
ing fact about the velocity structure functionsSq

u(r ). These
authors pointed out that even if the Reynolds number is
sufficiently large and, therefore, the power law~1.3! is not
distinctly developed, still power law relations hold over
wide r range, namely, between different order velocity stru
ture functionsSq

u(r ) and Sp
u(r ) for arbitrary pairsq and p.

This discovery, called the extended self-similarity~ESS!, en-
ables us to measure the functionz(q) more precisely than
with Eq. ~1.3! @7,8#. Furthermore, in 1996 Benziet al. @9,10#
discovered an even more generalized form of ESS, wh
seems to hold in an even widerr range than ESS. The
called it the generalized extended self-similarity~GESS!. Af-
ter these discoveries, numerous experimental or nume
analyses of structure functions based on ESS and GESS
been published@11#. Although ESS and GESS are expe
mentally quite effective to analyze data, their theoretical
sis remained unsatisfactorily clarified. In Ref.@12#, we pro-
posed a phenomenological derivation of the ESS formu
04630
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The aim of the present paper is to extend that. We formu
ESS and GESS by applying the large deviation theory,
we also calculate the relevant statistical quantities by ana
ing numerical and experimental data.

The paper is organized as follows. In Sec. II, we brie
review ESS and GESS, and discuss the general forms o
velocity structure functions and of the energy-dissipation r
structure functions that explain ESS and GESS. In Sec.
postulating a generalization of the refined similarity hypo
esis, we propose a similarity theory of the energy-dissipat
rate fluctuations by applying the large deviation theory. W
show that the asymptotic statistics of the velocity differen
fluctuations and of the energy-dissipation rate fluctuations
determined by the functionsf̃ (r ) andg̃1(r ), turn out to agree
with the experimentally found ESS and GESS. In Sec.
utilizing data from numerical simulations of Navier-Stok
flows and from experiments in jet flows, these functions
explicitly determined. Furthermore, the experimentally o
tained fluctuation spectrumSr̂ (z) is compared with that
based on existing phenomenological theories. Finally, disc
sion and remarks are given in Sec. V.

II. ESS AND GESS

In 1993, Benziet al. empirically found that even if be-
cause of small or moderate Reynolds numbers the ine
subrange with its power law behavior is not sufficiently e
tended, the following relation holds in anr range, which is
larger than in a plot ofSq

u(r ) vs r ,

Sq
u~r !;@Sp

u~r !#a(qup). ~2.1!

The exponenta(qup) is a unique function depending only o
q and p. This relation was reported for various moment o
dersq,p and for numerical simulations as well as for expe
mental measurements. Since, in the inertial subrange, r
tion ~2.1! has to be compatible with Eq.~1.3!, one obtains

a~qup!5
z~q!

z~p!
. ~2.2!

Therefore, if one exponentz(p) is known, e.g.,z(3)51, the
precise observation ofa(qup) yields z(q). This fact is
known as ESS.

The relation~2.1! implies thatSq
u(r ) generally takes the

form @10,12#

Sq
u~r !;uL

qF r

L
g̃1~r !G z(q)

, ~2.3!

whereg̃1(r ) is a dimensionless function ofr , which is inde-
pendent of the moment orderq. Inversely, Eq.~2.3! leads to
Eq. ~2.1!. Although originally ESS was thought to hold in
range extending the ISR toward smaller scales, i.e., into
viscous subrange~VSR!, detailed numerical analyses showe
that instead it extended toward largerr scales, i.e., beyond
the crossover region between the inertial and the stirring s
ranges@13#. In addition, it has been reported that the broad
extension toward large scales can also be observed in
7-2
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dimensional magnetohydrodynamic turbulence@14#. There-
fore, it seems quite natural to assume that the dimensions
function g̃1(r ) depends onr in terms of the outer scaleL
~instead ofh, the inner, viscous, Kolmogorov scale!,

g̃1~r !5gS r

L D . ~2.4!

The scaling functiong(x) is expected to be universal, i.e.,
be the same for different moment ordersq and different ex-
periments. This assumption gives

Sq
u~r !;uL

qF r

L
gS r

L D G z(q)

. ~2.5!

This will be checked numerically and experimentally in Se
IV, with a g(x) satisfying g(x)51 for x!1 and g(x)
5x21 for x@1.

In the previous paper@12# we extended the refined sim
larity hypothesis~1.8! by introducing a scaling exponentz̄r
@15# by

e r;eLF r

L
gS r

L D G2 z̄r

, ~2.6!

ur;uLF r

L
gS r

L D G (1/3)(12 z̄r )

. ~2.7!

From the postulates~2.6! and ~2.7! one immediately derives

ur

uL
;S e r

eL
D (1/3)F r

L
gS r

L D G (1/3)

. ~2.8!

This extends, cf. Refs.@10,12#, the similarity hypothesis
~1.8! of Kolmogorov and Obukhov. We there fore call it th
extended refined similarity hypothesis~ERSH!. One should
note that Eq.~2.8! is to be understood in a statistical sense
r can be chosen sufficiently smaller thanL but still suffi-
ciently larger thanh, Eq. ~2.8! reduces to Eq.~1.6!, because
hereg(x)51. However, ther dependence becomes visibl
if either there exists no broad ISR because of an only m
erate Reynolds number or ifr is chosen near the outer sca
L. EvaluatingSq

u from Eq. ~1.1! by combining Eqs.~2.8!,
~2.3!, and~1.10!, one finds

Sq
e~r !;eL

qF r

L
gS r

L D G t(q)

. ~2.9!

Therefore, we can conclude that ERSH leads to ESS for
energy-dissipation rate structure function too,

Sq
e~r !;@Sp

e ~r !#b(qup), ~2.10!

where in this case

b~qup!5
t~q!

t~p!
. ~2.11!

The characteristics of ESS may be summarized as follow
04630
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~i! z(q) can be determined already from turbulent flo
with only moderate Re.

~ii ! The structure functions of the velocity differences a
of the coarse-grained dissipation rates obey the scaling l
~2.5! and ~2.9! with a single functiong(x), which may be
universal.

~iii ! ESS is valid in the crossover region from the inert
~ISR! to the stirring~SSR! subranges.

Some years ago, Benziet al. @10# furthermore found
experimentally that the compensated velocity struct
functions Gq,3(r ) satisfy Gq,3(r );@Gq8,3(r )#rq,q8 with

rq,q85@z(q)2q/3#/@z(q8)2q8/3#, where

Gq,p~r ![
Sq

u~r !

„Sp
u~r !…q/p

. ~2.12!

This suggests that a generalization, denoted as GESS,

Gq,p~r !;@Gq8,p8~r !#g(q,puq8,p8), ~2.13!

might hold for a wider range even if a power law, cf. E
~1.3!, is not yet developed. Hereg(q,puq8,p8) is considered
as independent ofr and as a unique function of the mome
ordersq, p, q8, andp8. Since Eq.~2.13! holds in particular
in the inertial subrange, whereSq

u(r ) has the power law de
pendence~1.3! on r , one expects the relation

g~q,puq8,p8!5

q

p
z~p!2z~q!

q8

p8
z~p8!2z~q8!

5

q

p
tS p

3D2tS q

3D
q8

p8
tS p8

3 D2tS q8

3 D .

~2.14!

Here we used the relation~1.10!. Thus with GESS one may
directly measure the relative ratio of the excess expon
t(q). For further details on the compensated plots ofSq

u(r )
see Refs.@13,16,17#.

The observation~2.13! implies that the velocity structure
functions Sq

u(r ) take the even more general form than E
~2.3!, namely,

Sq
u~r !;uL

q@ f̃ ~r !#qF r

L
g̃1~r !G z(q)

, ~2.15!

where f̃ (r ) and g̃1(r ) are dimensionless functions ofr , and
are independent of the moment orderq. In fact, it is easily
shown that Eq.~2.13! holds for any choice of the function
f̃ (r ) and g̃1(r ), if only these do not depend onq. The func-
tions f̃ (r ) and rg̃1(r ) in Eq. ~2.15! correspond respectively
to @F(r )/G(r )#1/3 andG(r ) in Eq. ~52! of Ref. @10#.

The structure functionsSq
u(r ) must have the asymptoti

forms

Sq
u~r !;H r q ~r ! l !,

ESS scaling~2.5! ~r @ l !.
~2.16!
7-3
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Herel denotes the inner crossover scale of the turbulent fl
above which the inertial subrange starts.l is a multiple of the
Kolmogorov lengthh,

l[ah, ~2.17!

the parametera being about 10@18#. The first asymptotics in
Eq. ~2.16! must hold because the velocity differenceur in the
viscous subrange is proportional to the scaler itself. In order
to meet Eq.~2.16!, the dimensionless functionsf̃ (r ) and
g̃1(r ) must satisfy

f̃ ~r !5H c1

r

l
~r ! l !,

c2 ~r @ l !,
~2.18!

g̃1~r !5H c3S r

l D
21

~r ! l !,

gS r

L D ~r @ l !,

where c1 ,c2 ,c3 are positive constants of order unity, an
g(x) is the same as in Eq.~2.4!. For the VSR-ISR crossove
statistics, see Ref.@19#. The characteristic features of GES
may be summarized as follows.

~i! z(q) can be determined even in moderate Re num
turbulence.

~ii ! The scaling laws~2.13! and ~2.15! are characterized
by two functionsf̃ (r ) and g̃1(r ), which may be universal.

~iii ! GESS is the bridging formula for all three subrang
the viscous, the inertial, and the stirring subranges.

In the following section, we will derive GESS from
phenomenological ansatz in a generalized way as was p
ously done for ESS, see Ref.@12#.

III. GENERALIZED EXTENDED REFINED SIMILARITY
HYPOTHESIS AND GENERALIZED EXTENDED

SELF-SIMILARITY

The Navier-Stokes equations are invariant under the tra
formation @20,2,12#

r 85br, ur 85b(1/3)(12 z̄)ur , t85b(1/3)(21 z̄)t,

pr 85b(2/3)(12 z̄)pr , e r 85b2 z̄e r , n85b(1/3)(42 z̄)n,
~3.1!

where pr is the characteristic pressure difference over
linear scaler , n is the kinematic viscosity,b is an arbitrary
positive constant, andz̄ an arbitrary exponent. This invari
ance might suggest to introduce the scaling hypotheses

e r;eLF r

L
g̃1~r !G2 z̄r

, ~3.2!

ur;uL f̃ ~r !F r

L
g̃1~r !G (1/3)(12 z̄r )

. ~3.3!
04630
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Here f̃ (r ) andg̃1(r ) are arbitrary, dimensionless functions
r . As will be shown later, they coincide with the functionsf̃

andg̃1 in the preceding section.z̄r is assumed to be a random
variable, whose statistics, which expresses thee r(x) and the
ur(x) statistics, will be defined later. Equations~3.2! and
~3.3! give

ur

uL
;S e r

eL
D 1/3

f̃ ~r !F r

L
g̃1~r !G1/3

. ~3.4!

Equations~3.2!, ~3.3!, and ~3.4!, generalizing Eqs.~2.6!,
~2.7!, and ~2.8!, will be called the generalized extended r
fined similarity hypotheses~GERSH!. They are expected to
be valid for all scales, including those aboveL as well as
those belowl . The scaling hypotheses~3.2! and ~3.3! to-
gether with the large deviation theory of probability theo
@21–23# will play the central role in deriving the GESS for
mula ~2.15!.

First we introduce an effective scaler̂ by

r̂ ~r ![rg̃1~r !, ~3.5!

where r̂ (r ) is assumed to be a monotonously increas
function of r , r̂ 8(r ).0. This implies that Eq.~3.5! is a one-
to-one transformation betweenr and r̂ . The transformation
generally is nonlinear.

Then, let us define discrete scales by

r̂ n

L
[

r n

L
g̃1~r n!5b2n, n50,1,2, . . . ,N, ~3.6!

whereb with b.1 is an arbitrarily chosen number.

N52 logbF l

L
g̃1~ l !G ~3.7!

is associated with the finiteness of the microscaleh, and is
assumed to be sufficiently large.

Introduce now exponentszn by

e r n11

e r n

5b2zn, n50,1, . . . ,N. ~3.8!

The properties of the set$zn% will characterize the self-
similarity of the energy-dissipation rate fluctuations. It is u
derstood that thezn obey the same statistics for alln and do
not have any statistical anomalies, as, e.g., divergent v
ances or the like, for 0<n<N. This is considered as th
explicit mathematical expression of self-similarity that hol
in the range of scalesl ,r ,L. Equation~3.8! can be solved
to yield

e r n
5eLb2nz̄n. ~3.9!

Here eL describes then50 dissipation rate, andz̄n is the
coarse-grained exponent defined by
7-4
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z̄n5
1

n (
j 50

n21

zj . ~3.10!

The combination of Eqs.~3.9! and ~3.6! gives e r n

;eL@(r n /L)g̃1(r n)#2 z̄n, and therefore the exponentsz̄n con-
incide with z̄r n

in Eqs.~3.2! and~3.3!. The important point is

that the variablesz̄n are defined in terms of a set of rando
variables$zj% with j independent statistics. Incidentally, th
condition can be generalized in such a way that the corr
tion along the series of successivezj is finite and much
smaller than the stepn under consideration. This fact enabl
us to apply the large deviation theoretical analysis in eva
ating the statistics ofe r n

. We can, for largen, introduce the

characteristic functiont(q) via

Sq
e~r n!5^e r n

q ~x!&5^eL
qb2nqz̄n(x)&[eL

qb2nt(q). ~3.11!

Use has been made of the approximation thateL has no
fluctuations. Eliminatingb2n via Eq. ~3.6! leads to

Sq
e~r !5eL

qF r

L
g̃1~r !G t(q)

. ~3.12!

This in turn together with the assumption~3.4! implies Eq.
~2.15! including the exponent relation~1.10!, and also

Sq
u~r !;@ f̃ ~r !#qF r

L
g̃1~r !Gq/3

Sq/3
e ~r !. ~3.13!

Eliminating g̃1(r ) in terms ofSp
e (r ), we obtain Eq.~2.10!,

the exponent being given by Eq.~2.11!. Therefore, we can
conclude that Eq.~2.10! holds not only in the range wher
ESS is valid but also in the broader range where GE
holds.

One should note that, sincez̄n is given as the sum o
statistically equal random variables, the large deviat
theory @21–23# of probability theory implies that the prob
ability densitiesQn(z)[^d( z̄n2z)& for z̄n asymptotically in
n obey

Qn~z!;Anb2Sn(z)n5AnS r̂ n

L
D Sn(z)

, ~3.14!

where Sn(z) is a concave function ofz, i.e., Sn9(z).0, if
only n is much larger than the correlation width of thezn .
The exponentSr̂ n

(z)@[Sn(z)# is called the Cramer function
also the rate function, or the fluctuation spectrum, and
plays the central role of the large deviation theoretical
proach. The prefactorAn is becauseSr̂ n

(z) has a parabolic
form near its unique minimum. Although the large deviati
theory asserts thatSn(z) is independent ofn for n→` pro-
vided this limit can be taken, we here retain itsn dependence
for later discussion.

Abbreviating en5eLb2nz5eL( r̂ n /L)z[e, i.e., z̄n

5 ln(en /eL)/ln(L/r̂n)[z, the probability density Pr n
(e)

(5Qn(z)udz/deu) for e r n
is asymptotically given by
04630
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Pr n
~e!;

e21

Aln
L

r̂ n

S r̂ n

L
D Sr̂ n

(z)

. ~3.15!

One arrives at

Pr~e!;
e21

Aln
L

r̂

S r̂

L
D Sr̂ „zr̂ (e)…

, ~3.16!

with

zr̂~e![

ln
e

eL

ln
L

r̂

. ~3.17!

The probability densityPr(u)@5ude/duuPr(e)# for ur is
straightforwardly given from Eq.~3.16! and the assumption
~3.4! as

Pr~u!;
u21

Aln
L

r̂

S r̂

L
D Sr̂ „113zr̂ (u)…

, ~3.18!

where

u5uLS e

eL
D 1/3

f̃ ~r !S r̂

L
D 1/3

, ~3.19!

zr̂~u![

ln
u

uL f̃ ~r !

ln
L

r̂

[2
1

3
@12zr̂~e!#. ~3.20!

Appendix A offers a derivation of the asymptotic form~3.16!
from a point of view slightly different from the one above
which is based on the self-similarity of the energ
dissipation rate fluctuations.

As also discussed in Appendix A, the fluctuation spectr
S(z) may piecewise take two types ofz dependences. The
first one is a concave function and the second one is a lin
function of z. However, as shown in Sec. IV, numerical an
experimental analyses show no feasibility of the second t
of solution. So, we hereafter assume that the fluctua
spectrumS(z) is a concave function ofz.

The exponent functiont(q) and the fluctuation spectrum
S(z) are related@22,23,12# by

t~q!5S„z~q!…2qz~q!, ~3.21!

where

z~q!52t8~q!, S8„z~q!…5q. ~3.22!
7-5
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FUJISAKA, NAKAYAMA, WATANABE, AND GROSSMANN PHYSICAL REVIEW E 65 046307
These quantities, in principle, haver dependences, which
however, we omitted in Eqs.~3.21! and ~3.22!. If the dissi-
pation rate exponent functiont(q) is known, the above Leg
endre transformation enables us to obtain the fluctua
spectrum. On the other hand, one can directly measureS(z),
utilizing the asymptotic formulas~3.16! or ~3.18! for the dis-
sipation or the velocity difference fluctuations.

The functionsf̃ (r ),g̃1(r ), or Sr̂(z) may thus describe the
asymptotic statistical characteristics of isotropic, homo
neous turbulent flow despite moderate Reynolds number
the Reynolds number is sufficiently large such that the sc
r can be chosen well within the ISR,l !r !L, the above
formulas reduce to those in developed turbulence. In the
lowing section, we shall determine these functions by a
lyzing data from numerical simulations and from expe
ment.

So far the asymptotic form of the probability densi
Pr(u) for velocity difference fluctuations was discussed
assuming the GERSH. With this assumption it is determin
by the fluctuation spectrumSr̂„zr̂(e)… for the energy-
dissipation rate fluctuation. The validity of GERSH is, ho
ever, not obvious. Without the use of the GERSH, one
derive the asymptotic probability densityPr(u), assuming
the self-similarity of velocity difference fluctuations. This
done by applying the procedure similar to the above
energy-dissipation rate fluctuations.

Let us define the exponentzn
(u) via @22#

ur n11

ur n

5b2zn
(u)

, n50,1,2, . . . ,N, ~3.23!

wherer n andb are the same as defined in Eq.~3.6!, andzn
(u)

is assumed to be statistically steady inn and to have a suf-
ficiently short correlation step. This is solved to yieldur n

5uLb2nz̄n
(u)

with z̄n
(u)5n21( j 50

n21zj
(u) . Applying the large de-

viation theory, one can define the characteristic funct

z̃(q) via ^b2nqz̄n
(u)

&5b2nz̃(q) and the fluctuation spectrum
Sr̂

u(z(u)), with which the probability density is found to tak
the asymptotic form

Pr~u!;
u21

Aln
L

r̂

S r̂

L
D S

r̂

u
„z

r̂

(u)
(u)…

, zr̂
(u)

~u!5

ln
u

uL

ln
L

r̂

.

~3.24!

The function z̃(q) is assumed to depend only onq. If the
GERSH is applicable, the relations

zr̂
(u)

~u!5zr̂~u!1
ln f̃ ~r !

ln
L

r̂

, ~3.25a!

Sr̂
u
„zr̂

(u)
~u!…5Sr̂„113zr̂~u!… ~3.25b!
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should hold, wherezr̂(u) is the same as that in Eq.~3.20!.
Particularly, one getszr̂

(u)(u)5zr̂(u) in the ISR. The relation
~3.25b! will be tested with experimental data in the followin
section.

IV. NUMERICAL AND EXPERIMENTAL
DETERMINATION OF THE FUNCTIONS

CHARACTERIZING ESS AND GESS

In the present section, we compare the results of the p
nomenological theory obtained in the preceding secti
with those of numerical flow simulations by Fukayamaet al.
and with those of laboratory experiments done by K
suyamaet al.

Data A. Direct numerical simulations~Fukayamaet al.
@24#!. Fukayamaet al. @24# carried out direct numerica
simulation ~DNS! of the three-dimensional Navier-Stoke
equations. The data we will use are RUN 5 for forced turb
lence in their paper. The numerical procedure is as follo
The number of mesh points is 5123. As initial condition a
Gaussian random velocity field with an energy spectr
E(k,0)5c(k/k0)4 exp@22(k/k0)

2# with k053 is used. The
energy is permanently injected with a statistically homog
neous, isotropic, and Gaussian white random force limited
the band 2<k<3. The parameter values of the simulatio
are estimated as

n'0.001 35, eL'0.492, h'0.008 43, L'1.56,

Rel'125, a'10.8. ~4.1!

eL was obtained from its definition~1.6!, i.e., by using the
spatial derivatives of the velocity field.eL together withn
then impliesh. The numbera is defined bya5 l /h, see Eq.
~2.17!; we estimated the crossover scale between the visc
and inertial subranges to bel 50.0910 byfitting Fukayama
et al.’s data to the Batchelor parametrization@27,18#,

S2
u~r !5

eL

15n
r 2F11S r

l D
2G211z(2)/2

. ~4.2!

The estimate ofz(2), done by using the ESS analysis, led
z(2)/z(3)50.692.Since, in these DNS data, there does n
exist a sufficiently extended power law regime, one can
measurez(3) sufficiently precise. We thus assumez(3)51
and getz(2)50.692.

Data B. Jet flow experiment~Katsuyamaet al. @25,26#!
Katsuyamaet al.’s data@25,26# were measured in an air-in
air jet flow 6.5 m downstream from a square nozzle of s
0.4 m30.4 m. The axial velocity of the flow was measured
discrete timest j5 j Dt, j 51,2,3,. . . , whereDt510 ms is
the time interval between neighboring sampling times. T
velocity just behind the nozzle was 30 m s21. The probe’s
diameter is 5mm and its hot wire length 700mm. The output
signal was high-pass filtered at the frequency 0.1 kHz. T
smallest eddies time scale ([10An/eL) is 4 ms, 400 times
larger than the resolution. The number of data points is
3105. The mean velocityU(5uL) at the measuring position
was 14.4 m s21, and the root mean square of the veloc
7-6
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fluctuations wasv rms52.9 m s21; this value was calculated
according to the definitionv rms5A^(v j2U)2&, wherev j is
the measured velocity at timet j . Other parameters wer
evaluated as follows. First we defined the local ener
dissipation ratee j by

e j515nS v j 1k2v j

kUDt D 2

, ~4.3!

where we putk56, corresponding to about 11 timesh, one
of the viscous range scales to evaluate thev derivative; av-
erage values for smaller ones turned out to approxima
give the same values as that fork56. Experimental analysis
shows that the time difference 6Dt is not too short to evalu-
ate the local energy-dissipation rate. So we did not use
low pass filter of velocity fluctuations. The mean dissipati
rate eL was obtained with the formula eL
515n^(]vx /]x)2&; we approximated ^(]vx /]x)2& by
^(v j 1k2v j )

2&/(Dx)2 with Dx5kUDt, k56. The Kolmog-
orov microscaleh, the Taylor lengthl, and the stirring scale
L were calculated usingh5(n3/eL)1/4, l5A15nv rms

2 /eL,
and L5v rms

3 /eL . Finally, the Taylor-Reynolds number i
Rel5v rmsl/n. The parameter values thus obtained are

n515 mm2 s21, eL'84 m2 s23,h'80 mm,

L'0.28 m, Rel'900, a'15. ~4.4!

The parametera again was calculated via fit of the data
the Batchelor parametrization~4.2! with z(2)50.703z(3)
50.7030.9750.68 to determine the crossover scalel ;
this turned out to bel 51.2 mm. Furthermore, the coars
grained energy-dissipation ratee r was determined ase r

5m21( j 51
m e j with r 5mUDt. The probability densityPr(e)

will be calculated with the ensemble fore r defined in this
way. The spatial resolution (5UDt) is 140 mm, which
turns out to be almost twice the Kolmogorov scale.

Figure 1 shows the exponent functionsz(q)/z(3) and
t(q)5z(3q)/z(3)2q for both dataA andB. Here the maxi-
mum valueqmax54 for q in Fig. 1 is chosen after estimatin
the statistical scatter in the relevant tail region of the pr
ability density for the velocity differencesur , using a stan-
dard method, see, e.g., Ref.@24#. The functionz(q) for each
data set was determined using the ESS plot~2.1! with p
53. While for the dataA one cannot determinez(3) too
precisely, and we therefore assumedz(3)51, for the dataB
one can measurez(3)'0.97. Hereafter, the values of th
exponents in Fig. 1 will be used for later analysis of t
structure functions. The scaling relation~2.15! can be rear-
ranged to give

@Sp
u~r !#z(q)/z(p);uL

p[ z(q)/z(p)]@ f̃ ~r !#p[ z(q)/z(p)]F r

L
g̃1~r !G z(q)

.

~4.5!

Eliminating g̃1(r ) from Eqs.~2.15! and ~4.5! leads to
04630
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-
f̃ ~r !;$Sq

u~r !@Sp
u~r !#2z(q)/z(p)%1/[q2pz(q)/z(p)]

5$@Sq
u~r !#z(p)@Sp

u~r !#2z(q)%1/[qt(p/3)2pt(q/3)],

~4.6!

except for numerical factors. The last expression was
tained with the relation~1.10!. If the function f̃ (r ) is indeed
universal, as we expect and have assumed, the rhs of
~4.6! has to be independent ofq and p. In a similar way,
inserting Eq.~4.6! into Eq. ~2.15!, we get

r

L
g̃1~r !;$@Sq

u~r !#1/q@Sp
u~r !#21/p%1/[z(q)/q2z(p)/p]

5$@Sq
u~r !#p@Sp

u~r !#2q%21/[qt(p/3)2pt(q/3)].

~4.7!

FIG. 1. ~a! The exponent functionẑ(q)[z(q)/z(3) for dataA

andB. ~b! The functionsz(3q)2q, ẑ(3q)2q, andt(q) for dataA
andB. Lines except fort(q) are drawn with spline functions.
7-7
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The last expression was also obtained with the rela
~1.10!. Again, if g̃1(r ) exists as a universal scaling functio
the rhs of Eq.~4.7! must be independent ofq and p, too.
From these equations~4.6! and ~4.7! we then can numeri-
cally determinef̃ (r ) and g̃1(r ) as functions of eitherr /L or
of

r * [
r

h
. ~4.8!

At first we determine the functiong̃1(r ), which characterizes
ESS, cf. Eq.~2.4!. Figure 2 displays plots of@Sq

u(r )/uL
q#1/z(q)

according to Eq.~2.3! for ~a! the dataA and ~b! the dataB,
both vsr /L. The data should lie on one curve irrespective
q, provided that there exists a universal scaling funct
g̃1(r ) in Eq. ~2.3!. The curves for differentq indeed nearly
coincide. The slightq dependence at larger seems to be
compatible with the statistical scatter, since one cannot s
systematicq dependence. In a previous paper@12# we used
the assumption thatrg̃1(r ) is monotonously increasing with
r ; this property clearly is fulfilled with the data of both set

We now consider the scaling functionf̃ (r ), relevant for
the crossover from the viscous to the inertial subranges.
ure 3 shows the plots of the rhs of Eq.~4.6!, representing
f̃ (r ). Here we used the expression in terms ofz(q) andz(p)
as experimentally observed. There is a systematicq depen-
dence in the viscous subrange in the numerical simula
data, cf. Fig. 3~a!. We kept fixedp53, because we did no
observe sensitivity to the variousp values, which we
checked. In the jet data~data B! the function f̃ (r ) show
statistical fluctuations forr * >10, but no apparentq depen-
dence. But again we note systematic deviations in the sm
scale ranger * <10. Thus a universal scaling functionsf̃ (r )
seems to only approximately exist. Incidentally, it is a m
notonously increasing function ofr , which also satisfies the
expected asymptotics~2.18!. The considerable scatter in th
data forr * <5 in Fig. 3~b! may be due to statistical errors i
the sampling of the data because of the short time sc
related with these small spatial scales.

The numerical and experimental results forrg̃1(r ) as
given by Eq.~4.7! are shown in Fig. 4. Here we used th
expression in terms ofz(q) andz(p) as experimentally ob-
served. One can distinguish three characteristicr ranges,
which we naturally identify with the viscous, the inertial, an
the stirring subranges:~i! First the VSR forr * <10, where
we expect thatrg̃1(r ) approaches a constant as the scaler is
decreased.~ii ! An intermediate range, whererg̃1(r ) is
roughly proportional tor . ~iii ! The large r range, where
rg̃1(r ) again approaches a constant as the scale is increa
Although the jet results~dataB! contain considerable statis
tical fluctuations, it seems that they do not systematica
depend onq except again toward the viscous subrange. B
cause theq dependences in the small scale regions in b
Figs. 4~a! and 4~b! can be spoiled by insufficient data sam
pling in the numerical simulation and in the jet experime
due to the short time scales, one cannot safely draw, from
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present data, the conclusion that there does not exist a
versality in the VSR. The deviations at the large scales m
be influenced by finite size effects, e.g., by the shape dep
dence of the flow container.

Next we determine the probability densityPr(e) from the
data . Then the fluctuation spectrumSr̂(z) can be calculated
too from Eq.~3.16! as

Sr̂~z!5
ln@Aln~L/ r̂ !ePr~e!#

ln~ r̂ /L !
1const. ~4.9!

Here r̂ 5rg̃1(r ) andz5 ln(e/eL)/ln(L/r̂), see Eq.~3.17!. Fig-
ure 5~a! shows the fluctuation spectrumSr̂(z) for the dataB

FIG. 2. Check of universality ofg̃1(r ) in the ESS formula~2.3!
with ~a! dataA and ~b! dataB. Plotted is@Sq

u(r )/uL
q#1/z(q) vs r /L

from Eq.~2.3! for several values of the moment orderq. No appar-
ent q dependence is observed in the graphs.
7-8
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~jet! calculated with Eq. ~4.9!, where the function r̂

5rg̃1(r ), obtained from G2,3(r ) as rg̃1(r )/L
5@G2,3(r )#1/[z(2)22z(3)/3], was used,@cf. Eq. ~2.12!# and in-
serting~2.15!. Ther values were all chosen to be in the IS
therefore, theseSr̂(z) characterize the fluctuations in the in
ertial subrange. Figure 5~b! offers the fluctuation spectr
Sr(z) calculated withr instead ofr̂ in Eqs.~4.9! and ~3.16!
in the samer range as in Fig. 5~a!, i.e., calculated by assum
ing

Pr~e!;
e21

Aln
L

r

S r

L
D Sr „zr (e)…

, ~4.10!

FIG. 3. Plots of the rhs of Eq.~4.6! for p53 and variousq as
functions of r * 5r /h, normalized by its value atr * 5a5 l /h. ~a!
The DNS, dataA, ~b! the jet measurements, dataB.
04630
zr~e![

ln
e

eL

ln
L

r

. ~4.11!

If the inertial subrange is sufficiently extended, we exp
that Figs. 5~a! and 5~b! coincide. However, one observes
weak disagreement of both, particularly on the left sides
the curves. Furthermore, the scatter in the data on the
sides of the curves in Fig. 5~b! is more significant than that in
Fig. 5~a!. We conclude from this observation that th
asymptotic forms~3.16! and~3.17! with r̂ are more favorable
than that fitted as in Eqs.~4.10! and ~4.11! with r . This
means thatSr̂(z) is more fundamental thanSr(z) to discuss

FIG. 4. Plots of the GESS representation~4.7! of the function

g̃1(r ) vs r * 5r /h, for different moment ordersq and fixedp53.
As before~a! dataA and ~b! dataB, and also normalized by thei
values at the viscous inertial crossovera5 l /h.
7-9
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FIG. 5. Fluctuation spectra
Sr̂(z) calculated in the inertial
subrange with the same data~data
B! but in two different ways.~a!
With Eq. ~4.9!, equivalent to Eq.

~3.16!; r̂ was calculated with
G2,3(r ). ~b! With Eqs. ~4.10! and
~4.11! based onr .
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the ISR scaling. In the next paragraph we shall check thi
a more precise analysis by studying the differences of fl
tuation spectra for two scales.

In order to study to which extent the fluctuation spec
Sr̂(z) andSr(z) depend on the scaler , we consider various
differences D r̂ 1 , r̂ 2

S(z)[Sr̂ 1
(z)2Sr̂ 2

(z) and D r 1 ,r 2
S(z)

[Sr 1
(z)2Sr 2

(z) as functions ofz for some pairs of different

scalesr i* 5r i /h, see Fig. 6. In Fig. 6~a! the scales are de

scribed byr̂ , while in Fig. 6~b! r is used. The pretty irregula
scatter of the differences around zero seems to indicate
on average there is no significantr dependence of the fluc
tuation spectraSr(z). It therefore makes sense to speak
the spectrumS(z) in the inertial subrange. Of course, th
differencesDS(z) are smaller in the vicinity of the minima
of Sr̂(z) and Sr(z) than for largeruzu, because the corre
spondingS values themselves are smaller or larger there

A closer inspection of Fig. 6 shows that in Fig. 6~b! the
differences on the left wing seem to have a systematic n
zero trend, in contrast to the right wing, but in particular
contrast to the symmetric scatter around zero in Fig. 6~a!. We
conclude thatSr̂(z) is less scale dependent thanSr(z), i.e.,
Eq. ~3.16! is more appropriate than Eq.~4.10!.

Figures 7~a! and 7~b! show the fluctuation spectra in th
crossover range between the inertial and the viscous
ranges calculated with Eqs.~3.16! and ~4.10!, respectively.
One again observes a considerable statistical scatter in
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left side branches of the fluctuation spectra, while the ri
side branches seem to be robust against changingr to
smaller scales. The more significant scatter on the left s
wing in Fig. 7~b! as compared with that in Fig. 7~a! again
supports the greater feasibility of the effective scaler̂ in
comparison tor itself. Furthermore it seems that the left sid
branch ofSr̂(z) in Fig. 7~a! becomes smaller as the scaler
becomes smaller, which implies that the probability densit
Q or P for the case of negativez andr in the viscous range
@cf. Fig. 7~a!# are larger than in the inertial subrange@cf. Fig.
5~a!#. This fact coincides with an observation reported
Ref. @28# in the study of the GOY shell model.

To analyze the scale dependence in the crossover ra
we once more consider the spectra differencesD r̂ 1 , r̂ 2

S(z)
andD r 1 ,r 2

S(z). Herer 2 is kept fixed atr 25173h in the ISR,
while r 1 is stepwise reduced from 101h down to 9.03h. As
before, Figs. 8~a! and 8~b! differ in being based on Eq.~3.16!
with r̂ and on Eq.~4.10! with r , respectively. In Figs. 8~c!
and 8~d! the corresponding curves have been smoothe
with Bezier curves in the data-plotting tool, the gnuplot.
becomes apparent that the smaller the scale is, the m
Sr(z) deviates fromS173h(z). We have to conclude that th
fluctuation spectra in the VSR with decreasingr gradually
deviate from those in the ISR. Particularly their left bran
tends to decrease as the scale becomes smaller. This o
vation is less pronounced ifPr̂(e) is taken, Fig. 8~c!, than
with Pr(e), see Fig. 8~d!.
-

s

FIG. 6. Differences
D r̂ 1 , r̂ 2

S(z)5Sr̂ 1
(z)2Sr̂ 2

(z) and
D r 1 ,r 2

S(z)5Sr 1
(z)2Sr 2

(z) of the
fluctuation spectra vsz for four
scale differences within the iner
tial subrange.~a! and~b! were cal-
culated with Eq.~3.16!, referring

to r̂ , and Eq.~4.10!, referring tor
itself, respectively. The scale
r 1 /h534.3,70.5,84.9, and 101
are compared withr 2 /h5173.
7-10
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FIG. 7. Fluctuation spectra in
the crossover region between th
viscous and the inertial subrange
~a! is calculated with Eq.~3.16!,

i.e., parametrized withr̂ , and ~b!
with Eq. ~4.10!, based onr di-
rectly. The scatter of the data in
~a! seems weaker than in~b!. In

~a!, r̂ (r ) was calculated with
G2,3(r ).
tu
s

fi

ua-

Figure 9 displays the comparison of the measured fluc

tion spectra with three analytical approximation formula
Scalesr in the lower ISR are considered. The jet dataB are
taken. The first analytical approximation is the parabolic
(P) @2,23#,

S~z!5
D

2
~z2z0!2. ~4.12!

z0 is the minimum position,S8(z0)50, andD is the curva-
04630
a-
.

t

ture at minimum,D5S9(z0). Both parametersz0 andD are
independent. This approximation corresponds to the q
dratic excess exponent

t~q!52z0q2
q2

2D
. ~4.13!

The second analytic expression (K62) is obtained from Kol-
mogorov and Obukhov’s log normal theory@4,5#, which
again turns out to be quadratic inz and q. But since here
t(1)50 is taken into account~concluded from the structure
-
s

.

g

r

FIG. 8. ~a! and ~b! show dif-
ferences D r̂ 1 , r̂ 2

S(z) and
D r 1 ,r 2

S(z) of the fluctuation spec-
tra for various scales in the vis
cous and in the inertial subrange
from Sr̂ 2

(z) with r 25173h. ~a!

and ~b! were calculated with Eqs
~3.16!, ~3.17! and with Eqs.
~4.10!, ~4.11!, respectively.~c! and
~d! show the curves correspondin
to those in ~a! and ~b!, but
smoothened with the Bezie
method.
7-11
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equation!, z0 and D are related, and only one parameter
left. As this we takem[2t(2), theintermittency exponent
and obtain

t~q!5
m

2
q~12q!, ~4.14!

thus

S~z!5
1

2m S z1
m

2 D 2

. ~4.15!

The third analytical expression comes from She-Levequ
log-Poisson model@29,23,31,30#,

S~z!521
1

ln
3

2

S 2

3
2zD lnF 1

2e ln
3

2

S 2

3
2zD G . ~4.16!

The intermittency excess exponentt(q) is given by@29#

t~q!52
2

3
q12F12S 2

3D qG . ~4.17!

Equation~4.16! implies the minimum position and the cu
vature,

z05
2

3
22 ln

3

2
'20.144, ~4.18a!

FIG. 9. Comparison of the fluctuation spectra obtained from
dataB with the analytical approximation formulas.P is the para-
bolic fit with D53.35 andz0520.161 @Eq. ~4.12!#, K62 indi-
cates Kolmogorov and Obukhov’s log normal theory withm
50.30 @Eq. ~4.15!#, and SL denotes the She-Leveque model@Eq.
~4.16!#.
04630
’s

S9~z0!5S 2 ln2
3

2D 21

'3.04. ~4.18b!

As mentioned, the comparison of the measured spectra
the three analytical models is presented in Fig. 9.

Let us discuss the probability densitiesPr(e) andPr(u).
The comparison oft(q) from energy-dissipation rate fluc
tuations with that obtained by assuming~1.10! from velocity
structure functions for dataB is given in Fig. 1~b!. One ob-
serves a remarkable difference. This may suggest the in
plicability of the GERSH in a rigorous sense. However, if t
characteristic functionz(q)/z(3) is used instead ofz(q) it-
self, the result approximately coincides with the curvet(q).
This implies that the relation~1.10! holds for smallq in the
range shown in Fig. 1~b!. Furthermore, the fluctuation spec
tra Sr̂(z) calculated withPr(e) and Pr(u) are compared in
Fig. 10. If the GERSH holds, they collapse on a same cu
at least approximately. Clearly, one observes a remark
difference of the spectra on the left side of the curves
small value of the exponentzr̂ corresponds to a small valu
of ur or e r . The probability densityPr(u) does not vanish
for small value ofu. On the other hand, the probability den
sity Pr(e) practically vanishes for small value ofe. This is
the reason why the characteristic ofSr̂

u(z) and Sr̂(z) ob-
served with Pr(e) is different. However, in addition, the
curves on the right side are different from each other. Fo
small value ofq, as shown in Fig. 1~b!, no clear difference of
the characteristic functionz(q) calculated withPr(u) and
Pr(e) for q in the range in Fig. 1~b! is observed. It is ex-
pected that the difference of thez(q) calculated in two ways,
will be enhanced asq is increased, reflecting the differenc
of Sr̂(z) and Sr̂

u(z) and Sr̂(z). One thus concludes that th
fluctuation spectrumSr̂ is more sensitive than the characte

e
FIG. 10. Comparison of the fluctuation spectra obtained fr

Pr(e) andPr(u). One observes that they are globally different fro
each other. In particular, the difference is remarkable in a negatiz
region. For details, see the text.
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istic function z(q) itself. The difference ofSr̂(z) and
Sr̂(z

(u)) implies that the GERSH is not valid in a rigorou
sense. Therefore, Eq.~3.13! only holds for smallq. Never-
theless, the asymptotic forms~3.16! and~3.24! hold indepen-
dently.

V. CONCLUDING REMARKS

In the present paper, we presented the derivation of
generalized extended self-similarity formulas, GESS, of t
bulent flow structure functions. This GESS is supposed
bridge the statistical behavior in the viscous, the inertial, a
the stirring subranges. The approach is based on theK62
similarity theory of developed turbulence@4#. The main dif-
ferences between the present derivation of GESS and
K62 theory are first to carry out the self-similarity analys

not for the physical scaler itself but for the effective scaler̂ ,
defined in Eq.~3.5!, and second to apply the large deviatio
theory instead of the central limit theorem. In addition, w
proposed the asymptotic form of the probability densit
Pr(e) and Pr(u), for which the fluctuation spectraSr̂(z)
play the most important role, compatible with GESS. T
peculiarities of the obtained probability densities are that~i!
they take the generalized form of theK62 log normal theory,
and ~ii ! there appears an effective scaler̂ instead of the
physical scaler . Furthermore, using Katsuyamaet al.’s data
@25,26#, measured in an air-in-air jet flow, we constructed t
fluctuation spectraSr̂(z), see Eq.~3.16!, also consistent with
GESS. We evaluated the fluctuation spectrumSr̂

u(z(u)) with
the probability densityPr(u) from Katsuyama’s data, an
found a remarkable difference betweenSr̂(z) and Sr̂

u(z(u)).
This fact implies the breakdown of the GERSH in a rigoro
sense although the characteristic functionst(q) for small
values ofq calculated with the ESS processing seem to
incide with each other. One should study the applicability
the RSH, the ERSH, and the GERSH more carefully.

Our analyses of two data sets do not sufficiently confi
the validity of our approach toward the viscous scales. Ho
ever, they also do not indicate its inapplicability toward t
viscous range since the experimental data have limited
cision for the small scales: In dataA, the ratioh/Dx with the
grid sizeDx used in DNS is2.03/2p'1/3. In dataB, the
smallest eddies time scalet(510An/eL) is 4 ms, which
should be compared with the sampling timeDt510 ms. Al-
thought is 400 times larger thanDt, the spatial resolution
(5UDt5140 mm! is twice the Kolmogorov scaleh(
580 mm!. One needs, therefore, more and more accu
experiments to finally confirm the validity of the present a
proach as well as the applicability of GESS also toward
VSR.

As pointed out in Ref.@10#, GESS is specified by two
functions f̃ (r ) and g̃1(r ) as in Eq.~2.15!. The functionf̃ (r )
plays an important role in the crossover region between
dissipative and the inertial subranges. Therefore, it is nat
to assume that the functionf̃ (r ) is a unique function ofr / l ,
i.e.,
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f̃ ~r !5 f S r

l D . ~5.1!

On the other hand, the functiong̃1(r ) depends on bothl and
L. Since there appears no characteristic scale except t
two scales,g̃1(r ) may be written as

g̃1~r !5g1S r

l
,

r

L D ~5.2!

with a unique functiong1(x,y) of x andy. The scaling func-
tions f and g1 have the asymptotic formsf (x)5c1x for x
!1 andc2 for x@1, andg1(x,y)5c3x21 for x!y!1 and
g(y) for y@x@1, wherec1, c2, andc3 are numerical con-
stants ofO(1), cf. Eq. ~2.18!. Using the direct numerica
simulation data by Fukayamaet al. @24# and the experimen-
tal data by Katsuyamaet al. @25,26#, we determined the
functions f̃ and g̃1. Numerical analysis suggests theq inde-
pendent, universal existence of such functions. Although
analyzed two data sets, it still is considered as insufficien
draw a firm conclusion on the universality of the functio
f (x) and g1(x,y). It still remains an attractive problem t
clarify and confirm their universality. Further numerical an
experimental studies are highly desired. Possible forms
f (x) and g1(x,y) in connection with the Batchelor and th
Lohse and Mu¨ller-Groeling parametrizations forS2

u(r ) are
proposed in Appendix B.

The function S(z) is simply related to the multifracta
spectrumh(z) @20#, whereh(z) is defined as the fractal di
mension of the support wherez̄r takes the valuez @2,31,12#,
as

h~z!532S~z!. ~5.3!

It is worthy to note thath(z) can be negative. In contrast t
measuringS(z), it is not possible to directly observe th
multifractal spectrumh(z), which has been determined b
using the Legendre transform of the exponent functionz(q).
The presentS(z) can be directly measured as shown in S
IV. In this sense, the present approach is more conven
than the multifractal picture in analyzing turbulent flow.
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APPENDIX A: SELF-CONSISTENT EQUATION FOR THE
PROBABILITY DENSITY OF e r

Let L and h be the energy injection scale and the Ko
mogorov viscous lengthh5(n3/eL)1/4. Three scalesr 1 , r 2,
andr 3 are chosen such thath,r 3,r 2,r 1<L. We introduce
an effective scaler̂[ r̂ (r ) for later convenience.r̂ (r ) is as-
sumed to be a monotonous function ofr , i.e., r̂ 8(r ).0, but
at present not specified further.

Let P(e j ,r j uek ,r k), r j,r k , be the conditional probability
density that the coarse-grained energy-dissipation rate a
aged over the scaler j takes the valuee j under the condition
that the coarse-grained energy-dissipation rate averaged
the scaler k takes the valueek . In order to mathematically
formulate the self-similar characteristics of large Reyno
number turbulence, we assume that the following s
consistent ansatz for the conditional probability densit
holds:

P~e3 ,r 3ue1 ,r 1!5E P~e3 ,r 3ue2 ,r 2!P~e2 ,r 2ue1 ,r 1!de2 .

~A1!

This equation expresses first, that the probability density
the scalesr 1 and r 2 propagates into that forr 1 and r 3. Sec-
ond, the self-similarity hypothesis for the energy-dissipat
rate fluctuations states that the propagator should be equ
the conditional probability density for the scalesr 2 and r 3.
Ansatz~A1! looks like the Chapman-Kolmogorov type equ
tion for the velocity probability density proposed in Re
@32#.

Next, we turn to solving the self-consistent equation~A1!
for large Re, i.e., for a sufficiently extended inertial su
range. Consider the case that the effective distances sa
the relationsr̂ 3! r̂ 2! r̂ 1. In this case, Eq.~A1! has two types
of asymptotic, large Re solutions.

The first type solution takes the form

P~e j ,r j uek ,r k!;F lnS r̂ k

r̂ j
D G21/2

e j
21S r̂ k

r̂ j
D 2S(z(e j ,r j uek ,r k))

~A2!

for r̂ j! r̂ k with

z~e, r̂ ue8, r̂ 8!5

ln
e

e8

ln
r̂ 8

r̂

, ~A3!

whereS(z) is a non-negative and concave function,

S~z!>0, S9~z!.0. ~A4!

The prefactor in Eq.~A2! comes from the normalization con
dition *P(e j ,r j uek ,r k)de j51 and is irrelevant for the
asymptotic form of the probability density. This can b
shown below. Let us put
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r̂ j5 r̂ Le2nj , xj5 ln
e j

eL
, ~A5!

where r̂ L and eL are reference values of the effective sca
and the coarse-grained energy-dissipation rate, respecti
Inserting Eq.~A2! with Eq. ~A5! into Eq. ~A1! yields

expF2SS x32x1

n32n1
D ~n32n1!G

;E
2`

`

expF2SS x32x2

n32n2
D ~n32n2!

2SS x22x1

n22n1
D ~n22n1!Gdx2 . ~A6!

Here, we neglected the prefactor in Eq.~A2!, because it con-
tributes only logarithmically to the asymptotic form of th
probability density. In saddle point approximation, corr
sponding to the condition

S8S x32x2*

n32n2
D 5S8S x2* 2x1

n22n1
D , ~A7!

Eq. ~A6! implies

SS x32x1

n32n1
D ~n32n1!5SS x32x2*

n32n2
D ~n32n2!1SS x2* 2x1

n22n1
D

3~n22n1!, ~A8!

for the functionS. Herex2* is the value ofx2 that maximizes
the integrand of Eq.~A6!, and is determined by (x3

2x2* )/(n32n2)5(x2* 2x1)(n22n1), becauseS(z) is a con-
cave function.

Let us now evaluate the moments of the energ
dissipation rate fluctuations,^e r

q&. Assuming that the energy
dissipation rate at scaleL does not fluctuate, the orderq
moments ofe r for r ,L,

^e r
q&5E eqP~e,r ueL ,L !de, ~A9!

are governed by the fluctuation statistics of the scalesr less
thanL. From Eq.~A1!, we find

^e r 3

q &5E F E e3
qP~e3 ,r 3ue2 ,r 2!de3GP~e2 ,r 2ueL ,L !de2 .

~A10!

Substituting the asymptotic probability density~A2! into Eq.
~A10!, the factor@•••# is evaluated with steepest descent

@•••#;E e3
qe3

21S r̂ 2

r̂ 3
D 2S„ln(e3 /e2)/ln( r̂ 2 / r̂ 3)…

de3

;e2
qE S r̂ 2

r̂ 3
D qz2S(z)

dz;e2
qS r̂ 2

r̂ 3
D 2t(q)

, ~A11!
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where we defined

t~q!5min
z

@S~z!2qz#. ~A12!

The moments~A9! are thus written as

^e r 3

q &;S r̂ 2

r̂ 3
D 2t(q)

^e r 2

q &,

which implies the asymptotic form

^e r
q&;eL

qS r̂

L̂
D t(q)

. ~A13!

Here we used the boundary condition atr 5L and noticed
again that the fluctuations ofe r over the scaleL are zero~or
at least sufficiently small!.

The second type solution to Eq.~A1! is the power law

P~e j ,r j uek ,r k!;S e j

ek
D l

, l a constant. ~A14!

If Eq. ~A14! is written in the form of Eq.~A2!, we find that
S(z) depends linearly onz,

S~z!5~l11!z1const. ~A15!

However, we do not observe this type of behavior in o
numerical and experimental analyses in Sec. IV.

APPENDIX B: POSSIBLE FORMS OF SCALING
FUNCTIONS f̃ AND g̃1

In fully developed turbulence, if the scaler is chosen
within a sufficiently broad range betweenh andL, no effects
from the stirring and the viscous subranges are signific
and we can put

r̂ ~r ![rg̃1~r !5r . ~B1!

In the case of ESS, as proposed in Ref.@12#, the function
r̂ (r ) takes the form,

r̂ ~r !5rgS r

L D . ~B2!

Figure 2 numerically and experimentally provesr̂ 8(r ).0. In
the case of GESS, the effective scaler̂ may be written in the
scaling form,

r̂ ~r !5rg1S r

l
,

r

L D , ~B3!

whereg1(x,y) is supposed to be a unique function ofx and
y. Figure 4 demonstrates the monotony property ofr̂ (r ),
namely,r̂ 8(r ).0, except forr * <10. The data in Fig. 4~b!

show a systematic deviation fromr̂ 8(r ).0. One possible
explanation may be statistical errors in the sampling of
data, because the time scales on these small spatial scal
quite short. One has to reexamine the statistics on th
scales with additional, other data.
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Batchelor @27# proposed a parametrization forS2
u(r )

bridging behaviors forr ! l and r @ l . The Batchelor param-
etrization@27,18# is given in Eq.~4.2! and rewritten here as

S2
u~r !;H r

l F11S r

l D
2G21/2J 2F r

L

F11S r

l D
2G1/2

r

l

G z(2)

,

~B4!

expected to hold for allr !L including the crossover region
between the viscous and the inertial subranges. Compa
this with the scaling relation~2.15! for q52 with the as-
sumption~B3!, one obtains

f ~x!5
x

A11x2
, ~B5a!

g1~x,0!5
A11x2

x
. ~B5b!

In Ref. @12#, we proposed the extended form of the Loh
and Müller-Groeling parametrization@33# that now bridges
all three ranges, the viscous, the inertial, and the stirr
subranges. The proposed form is

S2
u~r !5

a2

15
~eLh!2/3

3

S r

l D
2

F11S r

l D
k l G @22z(2)#/k lF11S r

L D kLG z(2)/kL
,

;F r

l

F11S r

l D
k l G1/k lG 2F r

L

F11S r

l D
k l G1/k l

r

l F11S r

L D kLG1/kLG z(2)

~B6!

with positive k l and kL . If we put k l5kL52, the interpo-
lation formula~B6! specializes to that of Lohse and Mu¨ller-
Groeling. Equation~B6! suggests that the scaling function
in Eqs.~5.1! and ~5.2! should be chosen as

f ~x!5
x

~11xk l !1/k l
, ~B7a!

g1~x,y!5
~11xk l !1/k l

x~11ykL!1/kL
, ~B7b!

and, therefore,

g~y!5g1~`,y!5
1

~11ykL!1/kL
. ~B8!

Note that Eqs.~B7a! and ~B7b! give Eqs.~B5a! and ~B5b!,
respectively, fork l5kL52.
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